A Roadmap for Migrating Neurons

نویسنده

  • Caitlin Sedwick
چکیده

Politicians, pundits, and even your best friends occasionally do things that make you wonder how their brains are wired. The next time you have that thought, consider consulting a developmental neuroscientist: they work every day to understand the processes that wire up everyone’s brains. It’s a mind-boggling job, because as an embryo develops, the connections within its brain ramify, becoming ever more complex. For example, consider the neural connections in the mammalian cerebellum. This distinctive structure is responsible for coordinating sensory and motor signals to produce fine motor control. This must be a complicated job—the cerebellum contains about half of the brain’s neurons. The cerebellum receives many of its inputs from pontine neurons, which in adults are located in an area of the brain adjacent to the cerebellum itself. But embryonic pontine neurons are generated in a part of the brain far from the cerebellum, so they must undertake a migration to reach their ultimate destination. In mice, pontine neurons follow a very strict route: they migrate from the rear of the brain forward until they reach the front of the brainstem, and then they take a sharp turn toward the bottom surface of the brain stem. The processes guiding pontine neurons on this path are mainly a mystery but, as Marc Geisen, Filippo Rijli, and colleagues show in a new study, it’s now clear that the route followed by pontine neurons is dictated in large part by Hox genes. Hox genes express a family of transcription factors better known for their role in anterior-posterior segmental body patterning. In insects, mis-expression of Hox genes can cause insects to grow legs in place of antennae. More importantly for this work, Hox genes also direct hindbrain segmentation in mammals. Because of their prominent role in conveying positional information to cells during development, Geisen et al. felt that Hox genes were likely to help guide mammalian pontine neurons on their long trek. Therefore, they decided to examine which Hox genes are expressed in mouse pontine neurons during migration from the site of their origin to their final destination. The researchers first showed that embryonic pontine neurons express several Hox genes, and they targeted two of these genes, Hoxa2 and Hoxb2, for further study. They found that knocking out expression of Hoxa2 (or, to a lesser extent, Hoxb2) caused some pontine neurons to prematurely divert toward the bottom surface of the brain stem. It turns out that Hoxa2 controls this behavior by modulating pontine neurons’ responsiveness to chemoattractive and chemorepellant signals in their environment. To help visualize this, imagine the situation faced by a sleep-deprived motorist driving down a two-way city road crammed with cafés—all on the opposite side of the street. Although the motorist might badly want to cross the road to get some java, the doubleyellow line makes such a move illegal. But a break in the painted barrier gives the driver the go ahead to finally get some relief. Migrating pontine neurons are being lured by a chemoattractant (as tempting as good coffee) produced by the cells that line the bottom surface of the brain stem. The authors’ experiments show that pontine neurons are prevented from prematurely heading toward the attractant by a repulsive chemical called Slit, which is produced by cells of the facial motor nucleus, a structure that lies alongside the migratory path. Slit binds to the receptor Robo (which is expressed on the surface of pontine neurons) and prevents the neurons from responding to chemoattractants. The authors suggest that once the pontine neurons have migrated past the facial motor nucleus, the Slit signal wanes in intensity, providing a break in the repulsive barrier. This lets pontine neurons move toward the chemoattractant. The reason Hoxa2-deficient brains show aberrant pontine neuron migration is that Hoxa2 directly controls Robo expression in pontine neurons by binding to Robo DNA, and it indirectly controls Slit expression levels in the facial motor nucleus. Loss of Hoxa2 therefore causes some pontine neurons to become insensitive to Slit signaling, doi:10.1371/journal.pbio.0060153.g001

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system.

Netrin 1 is a long-range diffusible factor that exerts chemoattractive or chemorepulsive effects on developing axons growing to or away from the neural midline. Here we used tissue explants to study the action of netrin 1 in the migration of several cerebellar and precerebellar cell progenitors. We show that netrin 1 exerts a strong chemoattractive effect on migrating neurons from the embryonic...

متن کامل

Internet Telephony Architecture Roadmap

Interactive voice and video communication is slowly migrating to Internet protocols and the public Internet. However, third-generation wireless networks are likely to use Internet protocols extensively. This memo summarizes the IETF protocol architecture for providing such services in both landline and wireless environments based on IETF-specified protocols. It describes the basic functionality...

متن کامل

Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex.

During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a soluble form of neuregulin), in neuron...

متن کامل

توسعه چارچوب رهنگاری جهت مدیریت دانش سازمانی : تحلیل محتوای کیفی

Effective knowledge management (KM) is essential to almost any organization. Regardless of its size or subject matter, an organization should use the knowledge it possesses in the most effective way possible. But the implementation of KM is still challenging. One of the solutions for this challenge which mentioned in KM literature, is knowledge management roadmapping. Roadmaps provide a graphic...

متن کامل

In vivo evidence for radial migration of neurons by long-distance somal translocation in the developing ferret visual cortex.

During the development of the cerebral cortex, neurons generated in the cortical ventricular zone migrate radially toward the marginal zone. Radially migrating neurons are thought to display 1 of 2 morphologies: cells with a long, pia-contacting, apical process utilized for somal translocation early in development, when the cortex is still relatively thin; or cells with a short leading process,...

متن کامل

Involvement of filamin A and filamin A-interacting protein (FILIP) in controlling the start and cell shape of radially migrating cortical neurons.

Precisely regulated radial cell migration out of the ventricular zone is essential for corticogenesis. However, molecular mechanisms controlling the start of migration and the dynamics of migrating cell shape remain elusive. Here, we show novel mechanisms that can tether ventricular zone cells and control migrating cell shape. The novel protein Filamin A-interacting protein (FILIP) interacts wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008